Respuesta :

Answer:

[tex]r=\frac{6\sqrt{10AS}}{S\sqrt{\pi }}[/tex]

Step-by-step explanation:

Given the formula;

[tex]A=\frac{\pi r^2S}{360}[/tex]

We want to solve the given formula for r.

Multiply both sides by [tex]\frac{360}{\pi S}[/tex]

[tex]A\times \frac{360}{\pi S}=\frac{\pi r^2S}{360} \times \frac{360}{\pi S}[/tex]

[tex]A\times \frac{360}{\pi S}=r^2[/tex]

Take square root of both sides

[tex]r=\sqrt{\frac{360A}{\pi S}}[/tex]

[tex]r=\frac{\sqrt{360A}}{\sqrt{\pi S}}[/tex]

[tex]r=\frac{\sqrt{360A}}{\sqrt{\pi }\sqrt{S}}[/tex]

[tex]r=\frac{\sqrt{360A}\times \sqrt{S}}{\sqrt{\pi }\sqrt{S} \times \sqrt{S}}[/tex]

[tex]r=\frac{\sqrt{360AS}}{S\sqrt{\pi }}[/tex]

[tex]r=\frac{6\sqrt{10AS}}{S\sqrt{\pi }}[/tex]