Respuesta :
Answer:
[tex]m<BOC=47\°[/tex]
Step-by-step explanation:
we know that
[tex]m<AOC=180\°[/tex] ------> by straight angle
[tex]m<AOC=m<AOB+m<BOC[/tex]
substitute the values
[tex]3x+124+6x+29=180\°[/tex]
solve for x
[tex]9x+153\°=180\°[/tex]
[tex]9x=180\°-153\°[/tex]
[tex]9x=27\°[/tex]
[tex]x=3\°[/tex]
Find the measure of angle BOC
[tex]m<BOC=6x+29[/tex]
substitute the value of x
[tex]m<BOC=6(3)+29=47\°[/tex]
Answer: The angle measure of m∠BOC = 47°.
Step-by-step explanation:
Since we have given that
m∠AOB + m∠BOC = m∠AOC
and we know that
m∠AOC is a straight angle angle.
[tex]6x+29+3x+124=180^\circ\\\\9x+153^\circ=180^\circ\\\\9x=180^\circ-153^\circ\\\\9x=27^\circ\\\\x=\dfrac{27}{9}\\\\x=3[/tex]
So, m∠BOC = [tex]6x+29=6\times 3+29=18+29=47^\circ[/tex]
Hence, the angle measure of m∠BOC = 47°.