Respuesta :

Answer:

[tex]m<BOC=47\°[/tex]

Step-by-step explanation:

we know that

[tex]m<AOC=180\°[/tex] ------> by straight angle

[tex]m<AOC=m<AOB+m<BOC[/tex]

substitute the values

[tex]3x+124+6x+29=180\°[/tex]

solve for x

[tex]9x+153\°=180\°[/tex]

[tex]9x=180\°-153\°[/tex]

[tex]9x=27\°[/tex]

[tex]x=3\°[/tex]

Find the measure of angle BOC

[tex]m<BOC=6x+29[/tex]

substitute the value of x

[tex]m<BOC=6(3)+29=47\°[/tex]

Answer: The angle measure of m∠BOC = 47°.

Step-by-step explanation:

Since we have given that

m∠AOB + m∠BOC = m∠AOC

and we know that

m∠AOC is a straight angle angle.

[tex]6x+29+3x+124=180^\circ\\\\9x+153^\circ=180^\circ\\\\9x=180^\circ-153^\circ\\\\9x=27^\circ\\\\x=\dfrac{27}{9}\\\\x=3[/tex]

So,  m∠BOC = [tex]6x+29=6\times 3+29=18+29=47^\circ[/tex]

Hence, the angle measure of m∠BOC = 47°.