36x2 + 49y2 = 1,764 The foci are located at: (-√13, 0) and (√13,0) (0, -√13) and (0,√13) (-1, 0) and (1, 0)

Edit: The answer is (- the square root of 13, 0) and (the square root of 13, 0)

Respuesta :

Answer:

The correct option is 1.

Step-by-step explanation:

The given function is

[tex]36x^2+49y^2=1764[/tex]

Divide both sides by 1764,

[tex]\frac{x^2}{49}+\frac{y^2}{36}=1[/tex]         .... (1)

The standard form of ellipse is

[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex]         .... (2)

The focus of this equation is [tex](\pm c,0)[/tex].

where, [tex]c^2=a^2-b^2[/tex]

On comparing (1) and (2), we get

[tex]a^2=49, b^2=36[/tex]

[tex]c^2=a^2-b^2[/tex]

[tex]c^2=49-36[/tex]

[tex]c^2=13[/tex]

[tex]c=\pm\sqrt{13}[/tex]

Therefore the foci of the given ellipse are  (-√13, 0) and (√13,0). Option 1 is correct.