Respuesta :

Answer:

34.56%


Step-by-step explanation:

This is a binomial probability that can easily be solved using the formula:

[tex]p(x)=\frac{n!}{x!(n-x)!}*p^xq^{n-x}[/tex]

Where

  • n is the total number of trials (here it is 4)
  • x is the number of "success" ( here it is 3)
  • p is the success rate (given as 60%=0.6)
  • q is the not success rate ( it is 1 - p, so 0.4)

Substituting these values into the formula gives us our answer:

[tex]p(x)=\frac{n!}{x!(n-x)!}*p^xq^{n-x}\\p(x)=\frac{4!}{3!(4-3)!}*(0.6)^{3}(0.4)^{4-3}\\p(x)=\frac{4!}{3!1!}*(0.6)^{3}(0.4)^{1}\\p(x)=0.3456[/tex]

In percentage, the probability is 34.56%