Answer:
34.56%
Step-by-step explanation:
This is a binomial probability that can easily be solved using the formula:
[tex]p(x)=\frac{n!}{x!(n-x)!}*p^xq^{n-x}[/tex]
Where
Substituting these values into the formula gives us our answer:
[tex]p(x)=\frac{n!}{x!(n-x)!}*p^xq^{n-x}\\p(x)=\frac{4!}{3!(4-3)!}*(0.6)^{3}(0.4)^{4-3}\\p(x)=\frac{4!}{3!1!}*(0.6)^{3}(0.4)^{1}\\p(x)=0.3456[/tex]
In percentage, the probability is 34.56%