The slope of the equation is calculated as:
[tex]\frac{h_2-h_1}{t_2-t_1}=m[/tex]
Where [tex]h_2[/tex] is the height of the upper part of the slope and [tex]h_1[/tex] is the height of the low er part.
[tex]m=\frac{4000-4600}{24-0}[/tex]
[tex]m=-25[/tex]
So, the equation of the line is:
[tex]h-4600=-25(t-0)[/tex]
[tex]h=-25t+4600[/tex]
With this equation we can find the height of Alberto after having passed 10 sec.
[tex]h(10)=-25 (10)+4600\\h(10)=-250+4600\\h(10)=4350[/tex]
After 10 seconds Alberto is 350 feet from the bottom of the slope.
Alberto's speed is:
[tex]v=\frac{1560ft}{24s}=65ft/s[/tex]
The speed in miles per hour is:
[tex]v=65ft /s*\frac{1 mile}{5280 ft}*\frac{3600s}{1 hour}\\v=44.32 miles/h[/tex]