Respuesta :

Answer:

3p^26

Step-by-step explanation:

Given: (3p^4)^3 . (p^2)^7

Using the power of power rule :(a^n)^m = a^mn, we get

3p^(4*3) . p^(2*7)

= 3p^12 . p^14

Using the base rule: a^ m . a^n = a^(m+n), we get [If we have the same base in multiplication, we can add the powers]

= 3p^(12 + 14)

= 3p^26

Answer: 3p^26

Hope this will helpful.

Thank you.

Answer: [tex]3p^{26}[/tex]

Step-by-step explanation:

The given expression: [tex](3p^4)^3\cdot(p^2)^7[/tex]

According to the law of exponents  (Power rule):

[tex](a^x)^y = a^{xy}[/tex], we get

[tex]=3p^{4\times3}\cdot p^{2\times7}\\\\= 3p^{12}\cdot p^{14}[/tex]

According to the law of exponents  (Base rule):

[tex] a^x .\cdot a^y = a^{x+y}[/tex], we get

[tex]3p^{12}\cdot p^{14}=3p^{12 + 14}= 3p^{26}[/tex]