Respuesta :
Answer:
3p^26
Step-by-step explanation:
Given: (3p^4)^3 . (p^2)^7
Using the power of power rule :(a^n)^m = a^mn, we get
3p^(4*3) . p^(2*7)
= 3p^12 . p^14
Using the base rule: a^ m . a^n = a^(m+n), we get [If we have the same base in multiplication, we can add the powers]
= 3p^(12 + 14)
= 3p^26
Answer: 3p^26
Hope this will helpful.
Thank you.
Answer: [tex]3p^{26}[/tex]
Step-by-step explanation:
The given expression: [tex](3p^4)^3\cdot(p^2)^7[/tex]
According to the law of exponents (Power rule):
[tex](a^x)^y = a^{xy}[/tex], we get
[tex]=3p^{4\times3}\cdot p^{2\times7}\\\\= 3p^{12}\cdot p^{14}[/tex]
According to the law of exponents (Base rule):
[tex] a^x .\cdot a^y = a^{x+y}[/tex], we get
[tex]3p^{12}\cdot p^{14}=3p^{12 + 14}= 3p^{26}[/tex]