Respuesta :

Since there are no number that multiply to 155 and add to 6 you must now use the Quadratic Formula.

x=(-b(+/-)√[tex] b^{2} [/tex]-4ac)
                    2a

Answer:

[tex]\left ( \frac{6+\sqrt{24}i}{2}\,,\,\frac{6- \sqrt{24}i}{2} \right )\,,\,\left (\frac{6-\sqrt{24}i}{2}\,,\,\frac{6+ \sqrt{24}i}{2}  \right )[/tex]

Step-by-step explanation:

Let a and b be two numbers such that [tex]a+b=6\,,\,ab=15[/tex]

From equation a + b = 6 , we have b = 6 - a . On putting this value of b in equation ab=15 , we get [tex]a(6-a)=15\Rightarrow 6a-a^2=15\Rightarrow a^2-6a+15=0[/tex]

We will solve this equation using quadratic formula : For equation of form [tex]Ax^2+Bx+C=0[/tex] , [tex]x=\frac{-B\pm \sqrt{B^2-4AC}}{2A}[/tex]

Solving  [tex]a^2-6a+15=0[/tex] :

[tex]a=\frac{6\pm \sqrt{36-60}}{2}=\frac{6\pm \sqrt{24}i}{2}[/tex]

For [tex]a=\frac{6+\sqrt{24}i}{2}[/tex] , [tex]b=6-\frac{6+ \sqrt{24}i}{2}=\frac{12-6-\sqrt{24}i}{2}=\frac{6- \sqrt{24}i}{2}[/tex]

For [tex]a=\frac{6-\sqrt{24}i}{2}[/tex] , [tex]b=6-\frac{6- \sqrt{24}i}{2}=\frac{12-6+\sqrt{24}i}{2}=\frac{6+ \sqrt{24}i}{2}[/tex]